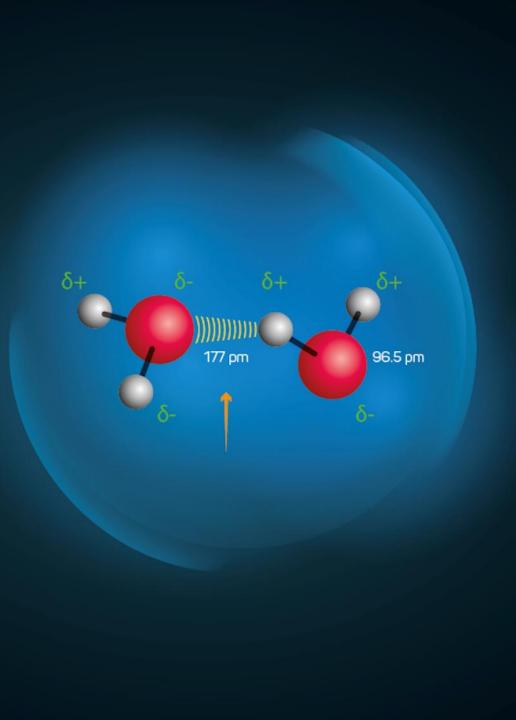


IN THE HEAT PRODUCTION OPERATION HEATING CIRCUITS AND HEAT DISTRIBUTION

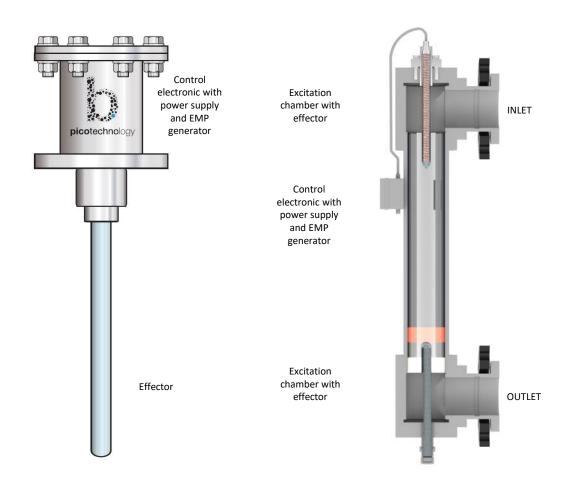
Blue Boson Technology


After the more than 20 years of research and development, dozens of successfully installations in various industry sectors in european region, our company Blue Boson SE decided to enter the global market with itself patented environmental technology for water and fluids treatment based on supramolecular level.

THE CHALENGES AND DEMANDS FOR CHANGES, TO WHICH NOWADAYS FACES THE SECTOR

Decreasing the production cost Decreasing the distribution cost Decreasing the operational cost

DECREASING THE ADVERSE IMPACT TO ENVIRONMENTAL

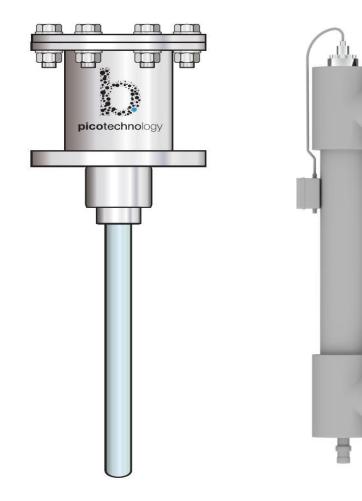

PRINCIPLE OF OPERATION

The flowing water is exposed to waves and pulses in the non-ionization zone from the Effector, which changes the supramolecular structure of the water and affects the amount and arrangement of the hydrogen bridges.

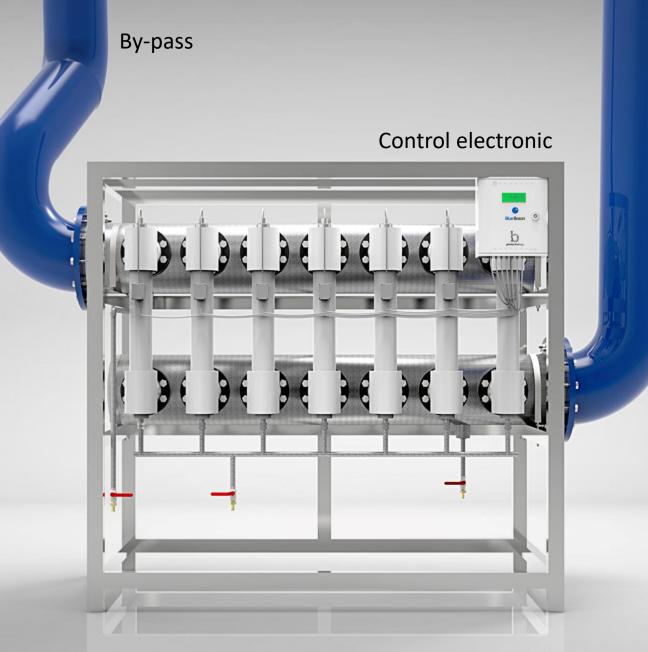
The change of amount and characteristics hydrogen bridges (hydrogen bonds) in the water has direct affect on change of the water structure where it occurs to modify the various physical parameters.

These changes possitivelly impact to hydraulic systems (circuits), increased their output, effectiveness and energetic efficiency.

DESCRIPTION OF **Blue Boson** TECHNOLOGY



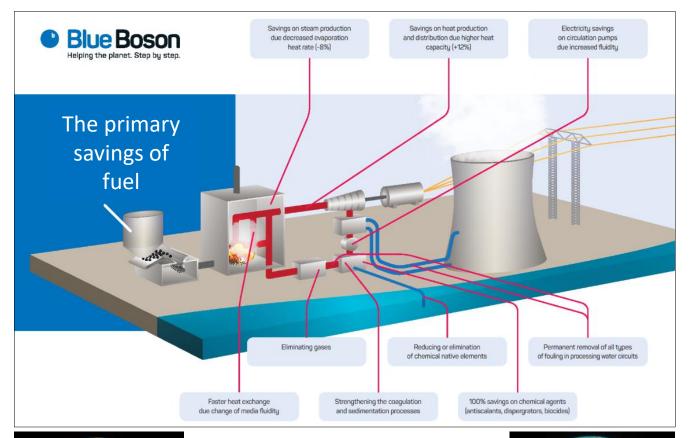
The technological device from Blue Boson company is excitation module which can be installed on the by-pass or directly to the pipework. The device consists from Effector, control electronic, EMP generator, power source and excitation chamber.


The device can be supplemented with the sludge and vent valve.

The technological device is tailor made and efficiency is preset according client needs.

PARAMETERS OF **Blue Boson** TECHNOLOGY

Flow rate:	without limit/scalable			
Pipe diameter:	without limit/scalable			
Temperature:	320°C/90°C			
Preassure:	max. 16,0 MPa/1 MPa			
Power supply:	230 V – 50 Hz/12 V DC			
Curent:	60 mA			
Output:	300 mW			
Príkon:	1,5 VA			
Ambient humidity:	max. 90%			
Ingres protection:	IP 68			



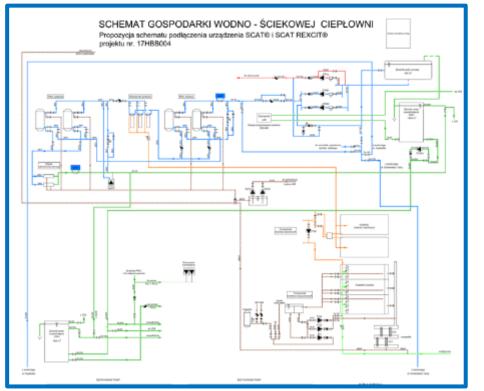
Configuration of 7 pcs. technological devices, pipework DN 300, flow rate 350m³/hour

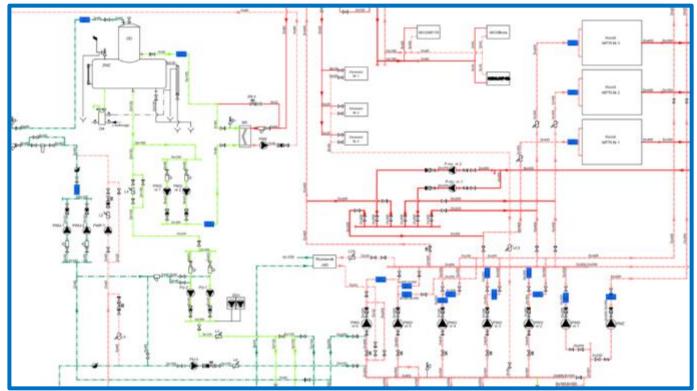
ENVIRONMENTAL BENEFITS

Reduction or total removing chemicals consumption for water treatment Reduction of input energy consumption Reduction of greenhouses gas emission Reduction of carbon footprint, pollution and environmental degradation Improving of environmental quality

BENEFITS OF **Blue Boson** TECHNOLOGY

The microscope pictures of onset nucleus crystals creation, in the nontreated water by **Blue Boson** technology. The microscope pictures of reduction of onset nucleus crystals, in the treated water by Blue Boson technology.

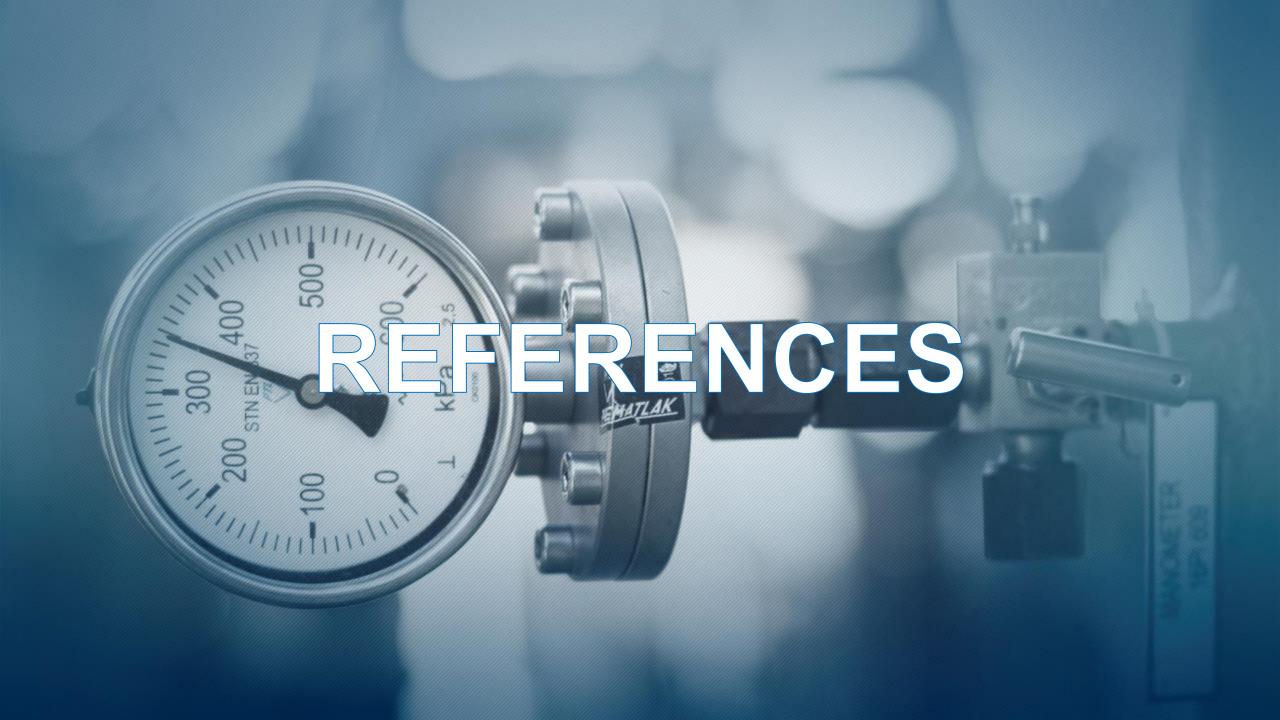



Removing of existing encrust Preventing the creation of the new encrust Removing of existing corrosion Preventing the creation of the new corrosion Reducing of fuel consumption Reducing of air pollution Reducing of greenhouse gas emission Reducing of chemicals for water treatment Reducing the load of pumps Reducing of electricity consumption of pumps operation Power output stabilization of hydraulic circuiuts Prolongation of hydraulic circuits lifespan Reducing of hydraulic circuits maintenance costs

TOTAL DECREASING THE ENVIRONMENTAL NEGATIVE

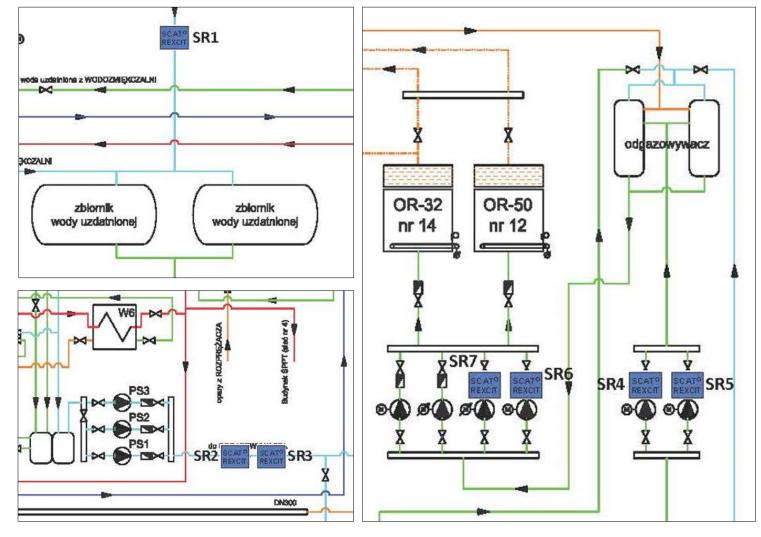
IMPACTS

THE EXAMPLE OF INSTALLATION – HEATING PLANT



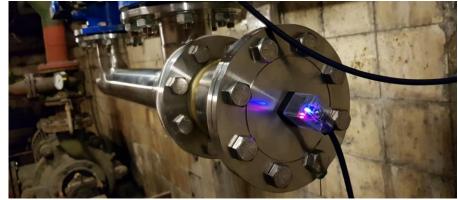
The recommended places of Blue Boson technology, in the heating plant circuits:

- On the entering pipework to chemical water treatment technology,
- Before KATEX, ANEX, mechanicacl/sand filters, hydrocyclones,
- On the entering pipework to demineralization station,
- Before heat exchangers, low/medium/high preheaters,
- Before circulating pumps,
- Colletion/storage tanks, boiler/DEMI water tanks, thermic degassing, boilers,
- On the enter to the distribution network, resp. on the output from heating plant


If the heating plant has cooling circuit, another installation places are:

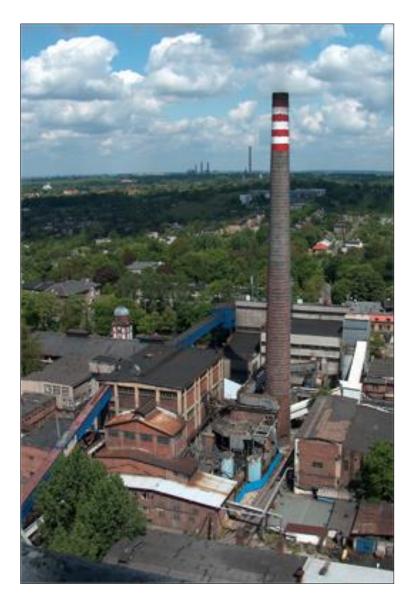
- In the pipework of feeding water to the cooling system,
- Before circulating pumps, compresors, fans,
- Before the heat exchangers (cooling towers/coolers/condensers/ chillers, ...),

The heat and electricity production Blue Boson

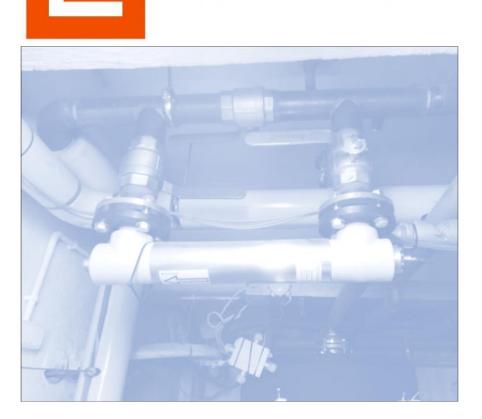


The devices have been installed on the entering pipework of raw water, before the collecting tanks of the condesate, behind the condensate pumps and before the thermic degassing.

WEGLOKOKS Energia ZCP, Elektrociepłownia Mikołaj


The production of heat and electricity. In operation are 3 pcs. of steam boilers with total installed output 85 MW and 6 MW steam turbine.

ELECTRICITY AND HEAT PRODUCTION


(steam, turbine)

Parameters	
amount of electricity production	25 219 MWh/year
amount of heat production	940 199 GJ/year
fuel consumption (coal)	47 113 t/year
CO ₂ production	103 526 t CO ₂ /year

Savings

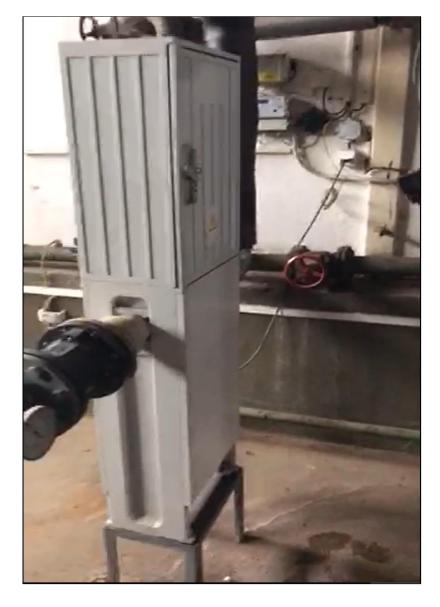
0	
relative increase of heat production efficiency	2,6 %
relative increase of electricity production efficiency	16,88 %
relative increase in efficiency of the plant	3,9 %
reducing th fuel consumption	1 803 t/year
reducing the CO ₂ emission production	4 244 t/year
total financial saving	566 877,- €/year

The administrative building in power plant Skawina 🛛 🕒 Blue Boson

CEZ SKAWINA

The technology device Effector Water is install on heating system of administrative building heating/power plant in Skawina, ČEZ Poland.

The heating system of administrative building


average heat consumption	222,938 GJ/month		
flow rate of primary side (heating)	3,3 m³/hour		
flow rate of secondary side (heating) 9,5 m ³ /hour			
temperature secondary side – supply	57,4 °C		
temperature secondary side – return	51,1 °C		
temterature difference – secondary side	6,3 °C		
temperature primary side – supply	72,2 °C		
temperature secondary side – return	54,1 °C		
temterature difference – primary side	18,1 °C		

Savings	
relative heat saving	15 %
absolute heat saving	37 GJ/month

The boiler room – district heating

Boiler circuit, DHW circuit

Boner encart, Briv cheart	
installed boiler's output (Prednádražie)	7 950 kW
heat consumption for DHW (Stred)	1 000 – 1 050 GJ/month
fuel	natural gas
cleaning the DHW exchangers	2 – 3 x/year
length of the one maintenace break	3 days
Savings	
boiler room Prednádražie – natural gas	18 %
chemicals to boiler circuit	60 %
boiler room Stred DHW	30%
reduction of greenhouse gas production	18 % KP a 30% TÚV
cleaning the DHW exchangers	1 x / 2 roky
length of the one maintenace break	3 hours

The heating circuit – reference

With Mr. Grega we cooperate in the field of reducing the operational costs from year 1992. we can confirm:

- Decreasing the interval of cleaning the heat exchangers for DHW production. We realized a technological breaks 2-3 times per year, the lenght of each break was about 3 days, before we installed ScatRexcit® technological devices. After the installation of mentioned devices, it is enough to realize the preventive inspections on heat exchangers one time in 2 years. The maintenance's length is 3 hours.
- 2. Year 2009 installation ScatRexcit® technology by company PATAGGS s.r.o. On secondary circuit, DHW preparation, boiler room STRED consumers are about 1 000 flats plus commercial operations. Before the installation ScatRexcit® devices, were the heat consumption for DHW preparation approximately 1 000 1 050 GJ monthly. After the installation ScatRexcit® technology the consumption in above mentioned location decreased to 700 750 GJ monthly, with the same quality of supplied water. The installation of these devices has secured us decreasing the normative consumption of gas depthly under the obligatory limits issued by SEIA.
- Year 2012 installation ScatRexcit® devices on boiler circuit in boiler room PREDNADRAZIE. By the installation of ScatRexcit® technology we decreased consumption of chemicals for chemical water treatment more than 60% and we decreased gas consumption for heat production about 1 GJ, that present more than 18%.

The rating of devices we operated in our company are under the supervising of state authority URSO (State Authority for Supervision of Network Industries). Even despite of we decided to decrease the costs for the heat and the DHW production. In non regulated deliveries URSO the savings reached value min. 20%, what we can on request declared.

In Bánovce nad Bebraou, 11-th of February, 2014

Anton Haňo konateľ BytTherm s.r.o. Technical director

BYTTHERM, s.r.o. Hollého 148/46 **BANOVCE nad BEBRAVOU** PSC 957 01

THE HEATING CIRCUIT – THE HEALTH CENTRE

Blue Boson

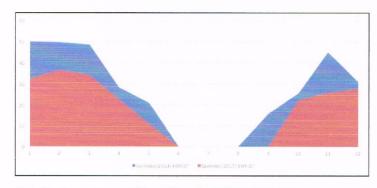
The technological devices in this facility have been installed on heating circuit. The produced heat is used for heating the building and DHW preparation. The devices are still in operation. The presented saving on heating for year 2015 is 18,4% and in year 2016 is 20,4 %.

THE HEATING CIRCUIT – THE HEALTH CENTRE

Blue Boson

LOVIS

Správa z vyhodnotenia prevádzky tepelnej sústavy zdravotného strediska v Prešove v rokoch 2015-2017


4. BILANCIA NAMERANÝCH HODNÔT TEPLA ZA ROKY 2015 – 2017

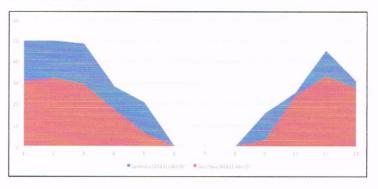
Pri výpočte úspory množstva tepla v objekte zdravotného strediska bol za referenčný rok definovaný rok 2014, kedy ešte nebolo zariadenie Scat Rexcit[®] inštalované. Nasledujúce tabuľky porovnávajú spotrebu tepla v rokoch 2015 – 2017 s referenčným rokom.

Tabuľka 3: Porovnanie nameraných hodnôt množstva tepla a počtu D° v rokoch 2014:2015

		Spotreba v roku 201	5	Spotreba v roku 2014 Rok 2		015 Uspor		a 2015		
	Počiatočný stav kWh	Koncový stav kWh	Spotreba (2015) kWh	Spotreba (2014) kWh	Počet D* {2014}	Spotreba (2014) kWh/D*	Počet D* (2015)	Spotreba (2015) kWh/D*	Podiel spotreby (2015)	Úspora %
január	45 939	56 462	20 523	30 225	605,7	49,9009411	631,8	32,48411	0.65097187	-34,902
február	66 462	86 82 6	20 364	23 999	481,3	49,8628714	555,2	36,67867	0,7355909	-26,440
marec	86 826	103 065	16 239	19 119	393,7	48,5623571	472,8	34,34645	0,70726482	-29,273
april	103 065	109 786	6 721	6 958	246,6	28,215734	297,4	22,59919	0,80094294	-19,905
maj	109 786	110 397	611	3 0 3 8	145,6	20,8653846	56,6	10,79505	0,5173666	-48,263
jún							to be and			
júl										
august							0.58			
september	110 397	110 397	0	1 171	74,0	15,8243243	27,3	0	0	
oktöber	110 397	117 722	7 325	6 893	270,6	25,4730229	330,1	22,19025	0,87112729	-12,887
november	117 722	130 104	12 382	19 422	429,6	45,2094972	479,7	25,81197	0,57094123	-42,905
december	130 104	145 991	15 887	18 453	596,1	30,9562154	570,1	27,86704	0,90020826	-9,9791
Spolu			100 052	129 278	3 243,2	39,8612481	3421	29,24655	0,73370893	-26,629

V tabuľke sú uvedené namerané hodnoty tepla a počet dennostupňov za rok 2015 a sú porovnávané s referenčným rokom 2014. Na základe dennostupňovej metódy bola v roku 2015 definovaná výška úspory vo výške 26,63%.

Obrázok 8: Porovnanie nameraných spotrieb v rokoch 2014:2015 [kWh/D°]


LOVIS

Správa z vyhodnotenia prevádzky tepelnej sústavy zdravotného strediska v Prešove v rokoch 2015-2017

Tabul'ka 4: Porovnanie nameraných hodnôt množstva tepla a počtu D° v rokoch 2014:2016

	Spo	treba v roku 201	16	Spotreba v roku 2014		4	Rok 2016			Uspora 2016	
	Počiatočný stav kWh	Koncový stav kWh	Spotreba (2016) kWh	Spotreba (2014) kWh	Počet D* (2014)	Spotreba (2014) kWh/D*	Počet D* (2016)	Spotreba (2016) kWh/D*	Podiel spotreby (2016)	Úspora %	
január	145 991	168 102	22 111	30 225	605,7	49,9009411	725,1	30,49373	0,611085	-38,8915	
februar	168 102	183 304	15 202	23 999	481,3	49,8628714	473,6	32,09882	0,643742	-35,6258	
marec	183 304	196 830	13 526	19 119	393,7	48,5623571	461	29,34056	0,604183	-39,5817	
april	196 830	201 030	4 200	6 958	246,6	28,215734	244	17,21311	0,610054	-38,9946	
máj	201 030	201 709	579	3 038	145,6	20,8653846	106,2	6,393597	0,306421	-69,3579	
jún							17-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-			0	
júl								(Subjection)		0	
august								170 110		0	
september	201 709	201 890	181	1 171	74,0	15,8243243	55,4	3,267148	0,206464	-79,3536	
oktober	201 890	210 689	8 799	6 893	270,6	25,4730229	363,7	24,19302	0,94975	-5,02495	
november	210 689	227 140	16 451	19 422	429,6	45,2094972	499,8	32,91517	0,728059	-27,1941	
december	227 140	246 670	19 530	18 453	596,1	30,9562154	705,9	27.66681	0,89374	-10,626	
Spolu			100 679	129 278	3 243,2	39,8612481	3634,7	27,6994	0,694895	-30,5105	

V tejto tabuľke sme taktiež porovnávali namerané hodnoty množstva tepla a počtu dennostupňov v roku 2016 s nameranými hodnotami množstva tepla a počtu dennostupňov v referenčnom roku 2014. Na základe dennostupňovej metódy bola v roku 2016 definovaná výška úspory vo výške 30,51%.

Obrázok 9: Porovnanie nameraných spotrieb v rokoch 2014:2016 [kWh/D°]

DRINKING WATER – water distribution in **Blue Boson** operational buildings in heating plant

"In cooperation with your company we have successfully resolved the problems with drinking and service water in the old and clogged pipelines of our heating plant. Drinking water was heavily polluted by incrustation, which manifested through discoloration and strong turbidity. Today our water is clean and complies with the drinking water standards"

Ing. Pavol Fillo, Production and Technology Director

"At last, we can drink tea, coffee and wash the dishes"

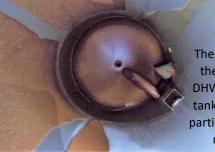
Dobroslava Petrovičová, Secretariat of the CEO and Company Director

DRINKING WATER – water distribution in operational buildings in heating plant

The supplying pipework of raw plant areal	water to heating
water in building (rich orange color)	Non-drinking
Pipework	DN 100
pipework material	Cast iron/steel
pipework state	Corrosion, encrust
Before installation	After installation

DHW circuit - ARAGONIT

The operator of heating circuits has long-term problems with gloging of pipeworks and heatexchange surfaces of heatexchangers. The target of this project was starting the process of existing encrust removing and then to prevent the creation of the new encrust. In march 2019 have been installed 2 pcs. of BB devices to DHW circuit in health center building. Based on regular inspections was proven of en-



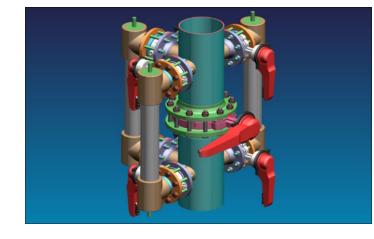
ŠKO-ENERGO, s.r.o.

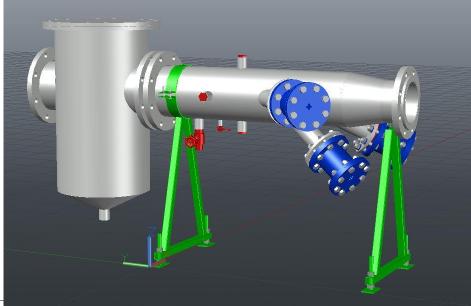
REFERENCE O ZAKÁZCE

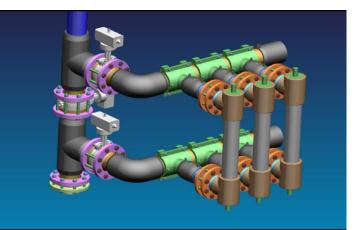
Blue Boson SE. Heydukova 1, 811 09. Bratislava Ladislav Malovecký, tel.: +421 903 462 169.					
BB180001					
ŠKO-ENERGO, s.r.o. tř. Václava Klementa 869, 293 60 Mladá Bolesla Ing. Stanislav Tichý, tel.: +420 734 264 512					
areál závodu ŠKODA-AUTO, a.s. tř. Václava Klementa 869, 293 60 Mladá Boleslav					
2019					
Odstranění existujících a zabránění tvorby nových inkrust, zvýšení účinnosti při přestupu tepla v hydraulických tepelných okruzích, snižování provozních nákladů					
Umístění na webových stránkách, v propagačních/reklamních materiálech, v tištěné formě, použití jeko reference v jiné zakázce					
V digitální nebo tiskové formě - logo s názvem společnosti, krátký text					
l hu prací: le požadavku objednatele bez výhrad.					
04.2020 Itag. Tomáš Kubín					

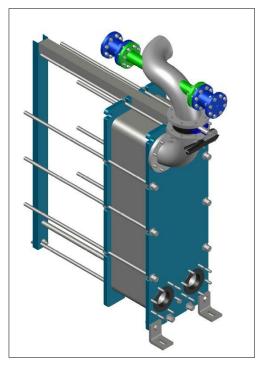
ARAGONIT, encrust structure from storage DHW tank

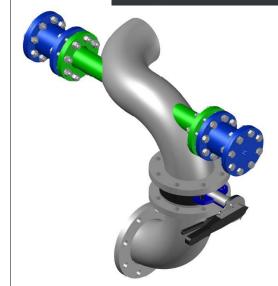
The view into the inside of DHW storage tank after the partial encrust removing.

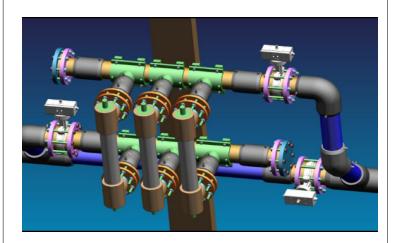

crust removing

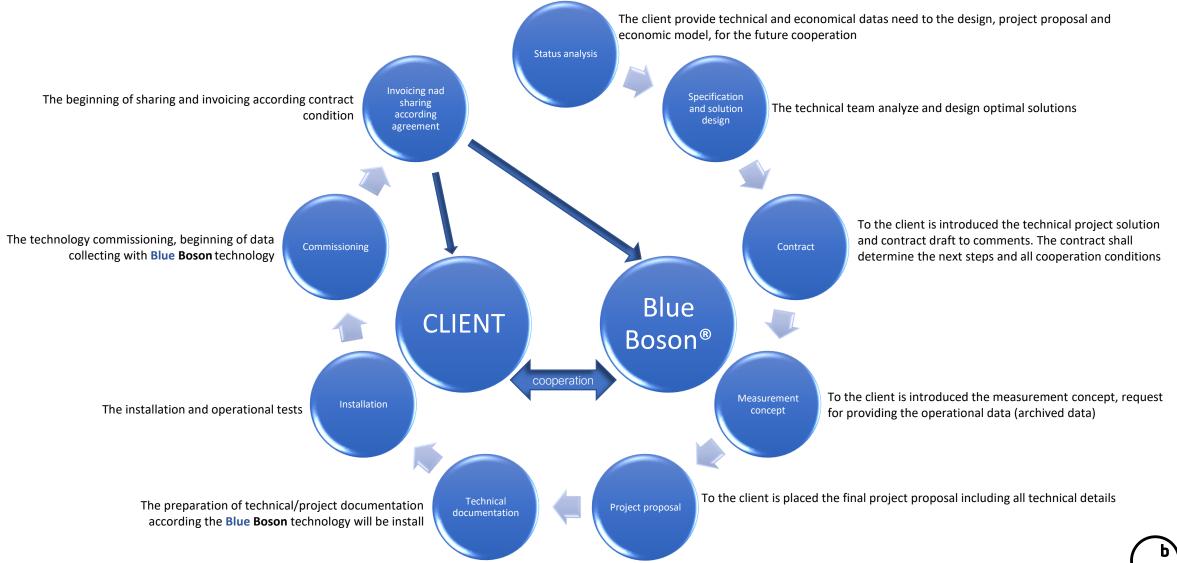

O-ENERGO, s.r.o. +420 326 819 027-8, +420 326 817 477-8 lava Klementa 869, 293 60 Mladá Boles +420 326 814 777, +420 326 814 15 info@sko-energo.cz, www.sko-energ was successfully began. The benefits have


been proven and technology will be install to another hydraulic circuits.


THE INSTALLATION EXAMPLES


Blue Boson





OPTIMIZATION OF ENERGY COST – ESCO model

Blue Boson

Thank you

